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Department of Electrical and Computer Engineering, Fac-
ulty of Engineering, Kharazmi University, Tehran, Iran Ab-
stract—Natural videos and user-generated content (UGC) il-
lustrate complex distortions that are difficult to model. As a
result, existing Video Quality Assessment (VQA) methods mostly
have problem to achieve high performance on these videos. In
this paper, we propose a method that utilizes correlation-based
features fine-tuned on an image quality assessment dataset to en-
hance VQA performance. These low-level features are combined
with high-level features extracted from the final layers of the
network, providing a rich representation of spatial degradations.
For temporal pooling, a simple max-pooling operation is applied.
Experimental results on two widely used UGC datasets, LIVE-
VQA and KoNViD-1k, demonstrate strong performance while
maintaining low computational complexity.The implementation
of our method is available on GitHub at GitHub Repository.

Index Terms—fine-tuned feature maps, gram matrix, no-
reference video quality assessment, deep convolutional neural
networks, SVR.

I. INTRODUCTION

Spreading of the multimedia technology has extensively
promoted digital visual content usage in all aspects of life.
Digital television, video surveillance, and video conference
applications have grown so fast that individuals’ methods of
sharing and receiving content have been transformed [1]. The
intersection of social media platforms and portable mobile
technology, such as YouTube, Facebook, and TikTok, has
rendered video-sharing more mainstream, with YouTube alone
hosting 2.6 billion users by 2022 [2]. At the same time, the
COVID-19 pandemic considerably increased the use of online
media, showcasing the widespread impact that video content
has on everyday digital communication [3].

Though it is easy to share and even view video content,
maintaining its quality is a concern in terms of compres-
sion, network variations, and other deformations that have
a tendency to degrade the visual content [1], [4]. Video
quality evaluation thus becomes inevitable for improving user
experience and confidence in video delivery services [4].
The conventional ways of Video Quality Assessment (VQA)
include subjective and objective methodologies. Subjective
VQA, though precise, is not feasible for real-time large-scale
applications as it utilizes human evaluators [4], [5]. Objective

VQA, however, tries to estimate perceived quality without such
limitations.

Objective techniques for Video Quality Assessment (VQA)
can be categorized into three types: full-reference (FR-VQA),
reduced-reference (RR-VQA), and no-reference (NR-VQA)
and need different amounts of reference information [5].
Specifically, NR-VQA, or blind quality assessment, has be-
come increasingly significant due to its relevance in environ-
ments where a perfect reference is not achievable [1], [5].
Recent advancements in blind assessment approaches tap into
the inherent properties of video material, combining Natural
Scene Statistics (NSS) with sophisticated machine learning
algorithms to effectively estimate video quality from spatio-
temporal characteristics [6].

However, current NR-VQA models, predominantly built
on top of pre-trained deep Convolutional Neural Networks
(CNNs), have been shown to focus mostly on broad patterns
at the expense of detail regarding spatial and texture-specific
ones [1]. To rectify this limitation, new frame-level feature
extraction methods have been explored in recent studies,
thus advancing the capacity of NR-VQA models to discern
minor quality fluctuations and become more generalizable to
other datasets [1]. This paper presents a new algorithm and
highlights the need for presenting such new features, thus
making a valuable contribution to the evaluation of user-
generated content with real distortions. By researching and
enhancing such techniques, we open up the possibility of
developing more stable and efficient systems for video quality
evaluation, which are adaptable to the increasing needs of
digital media consumption.

II. RELATED WORKS

Recent advances in no-reference video quality assessment
(VQA) have increasingly focused on the incorporation of
deep learning methods to address the diverse and complex
nature of modern video content. Unlike previous methods
that relied mainly on manually crafted statistical features, the
advent of user-generated content, which is typified by multiple
distortions, has prompted the shift towards more sophisticated
techniques that utilize deep feature integration.
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At the heart of this development process is the approach that
Xu et al. put forward in 2014 and presented V-CORNIA. The
approach makes use of unsupervised learning coupled with
spatial and temporal feature extraction through modifications
of the CORNIA framework and employs max-min pooling
methods [7]. Merging these features with support vector
regression (SVR) enables precise mapping onto quality scores,
effectively encapsulating temporal dynamics.

Varga’s framework in 2019 employed CNNs in LSTM
models to exploit spatial-temporal dependencies, culminating
in a comprehensive no-reference VQA system. In this method,
complex video artifacts are elegantly dealt with through tem-
poral pooling and regression strategies, echoing the strength
of deep feature extraction [8].

Newer approaches like VSFA, also proposed around the
same time, leverage pre-trained CNNs for content-aware fea-
tures, while GRUs facilitate temporal modeling to manage
long-term dependencies of video sequences [11], [12]. Such
approaches, inspired by human perception models, strive to
align machine ratings with human qualitative ratings, provid-
ing greater granularity in quality prediction.

Bakhtiari and Mansouri’s work in 2022 highlights the intri-
cate interdependencies among deep feature maps, with CNN
architectures particularly designed for video frame degradation
identification. Their novel fusion of pooling techniques proves
the adaptability necessary for addressing the huge video qual-
ity variability space [9].

In 2023, Bakhtiari proposed a new approach that is based
on the correlation between feature maps that already pre-exist
within pre-trained networks, FMC-VQA. The work empha-
sizes employing Gram matrices to find correlations in mid-
layer feature maps, thereby adding richness to the quality
assessment technique. Through investigations of structural
attributes such as texture and curvature and the application
of Gram matrices as high-level quality features, authors report
notable advancements on various datasets, showing improve-
ment in generalizability and efficacy. The paper employs the
EfficientNet B4 architecture that proves to be notably superior
to conventional approaches in rank correlation coefficients
[10].

Also, towards the goal of closing the discrepancy between
application and model predictions, approaches that entail es-
tablished datasets such as LIVE and CSIQ ensure more com-
prehensive validation environments. The environments allow
the development of models that can more accurately capture
real-world quality assessment scenarios [6], [11]. Entwining
approaches such as PaQ-2-PiQ enhance the precision of qual-
ity rating and thereby ensure tests remain in synchrony with
evolving video production and consumption scenarios, which
change rapidly.

III. PROPOSED METHOD

The rapid growth in video consumption has underscored
the need for reliable No Reference Video Quality Assessment
(NR-VQA) models. Traditional methods, like the Bakhtiyari
approach, often struggle to accurately detect spatial distortions

and effectively combine spatial and temporal features. To
overcome these limitations, we propose a new NR-VQA model
that enhances the extraction and integration of spatial features,
resulting in a more accurate overall video quality assessment.
The flow of our proposed method, from video input to the
computation of the Mean Opinion Score (MOS), is clearly
depicted in Figure 1. This flowchart emphasizes key stages
such as frame extraction, feature processing, and the final
prediction step, providing a systematic overview of the model’s
workflow.

A. Fine-Tuning InceptionV3 for Spatial Feature Extraction

The first step in our approach is to fine-tune the InceptionV3
network using the TID Image Quality Database. This step is
key to improving the model’s ability to detect subtle spatial
distortions that can appear in video frames. By fine-tuning, we
adjust InceptionV3’s weights, allowing it to more accurately
capture quality-related features, leading to a more refined
and precise extraction of spatial features that are crucial for
assessing video quality.

B. Spatial Feature Extraction from Video Frames

After fine-tuning, InceptionV3 is used to extract spatial
features from each video frame. We take advantage of in-
termediate layers of the network to capture various levels
of abstraction which are essential to accurately assess video
quality. To further refine the representation, we compute the
Gram matrix across these layers, capturing texture information
that aligns with perceptual quality. In addition, features of the
avgpool layer are included to form a comprehensive spatial
feature vector for each frame, ensuring a rich and detailed
representation of the spatial characteristics of the video.

C. Spatial-Temporal Feature Synthesis

To capture the temporal dynamics of the video, we com-
bine spatial and temporal characteristics by applying both
average pooling and max pooling across the spatial feature
vectors of all frames. This dual pooling technique effectively
captures both the average and extreme variations in spatial
quality over time, offering a well-rounded view of video
quality. The pooled features are then concatenated, enriching
the feature set with subtle and significant quality changes
observed throughout the video sequence, ensuring a more
comprehensive representation of its overall quality.

D. Support Vector Regressor for Quality Prediction

The concatenated spatial-temporal features are then fed into
a Support Vector Regressor (SVR), which is trained to predict
the Mean Opinion Score (MOS) for video quality. The SVR
uses the rich, combined feature representation to map these
features to subjective quality scores, resulting in a robust
prediction model. This model is capable of handling a wide
range of video content, ensuring accurate quality assessments
in various types of videos.



E. Implementation Details

Our proposed NR-VQA model is built on the InceptionV3
architecture, which is fine-tuned using the TID Image Quality
Database to enhance its ability to extract spatial features
essential for video quality assessment. This fine-tuning is
carried out in PyTorch, a popular deep learning framework
known for its dynamic computation graph and flexibility in
model customization. PyTorch’s strong support for automatic
differentiation and GPU acceleration makes it ideal for effi-
cient training and experimentation.

For the video quality prediction task, we use a Support
Vector Regressor (SVR) implemented through the scikit-learn
library. This combination ensures computational efficiency
while maintaining high accuracy in predicting video quality,
making the model adaptable to various video datasets. The
implementation is designed to be both scalable and portable,
enabling easy adjustments and improvements for different
video quality assessment scenarios.

F. Evaluation/Validation

We validate our NR-VQA model using two widely recog-
nized user-generated content (UGC) video datasets: KoNVid-
1k and LiveVQA. These datasets cover a broad range of
video types, ensuring a thorough evaluation of our model’s
performance across diverse content.

To measure performance, we use two key metrics: Pearson
Linear Correlation Coefficient (PLCC) and Spearman Rank
Order Correlation Coefficient (SROCC). These metrics are
essential for assessing how closely our model’s predictions
align with subjective human evaluations of video quality.

In addition to standard validation, we conduct cross-dataset
testing to assess the model’s generalizability. We train the
model on one dataset (e.g., KoNVid-1k) and test it on the
other (e.g., LiveVQA), and vice versa. This approach helps
demonstrate our model’s robustness and its ability to perform
well across different video datasets with varying contexts and
distributions.

The results show that our proposed method consistently
achieves high PLCC and SROCC values in both data sets,
outperforming existing NR-VQA models. This underscores the
model’s adaptability and effectiveness in delivering accurate
quality predictions, regardless of the video content.

In summary, the proposed method makes a significant
contribution to the field of No Reference Video Quality
Assessment by improving spatial feature extraction and inte-
grating a dual pooling strategy. These advancements result in
notable gains in both the accuracy and robustness of video
quality predictions. Looking to the future, further research
will aim to expand the model’s applicability across a wider
variety of video content scenarios. Additionally, there are plans
to incorporate additional contextual factors that could affect
perceived video quality, further enhancing the model’s ability
to predict quality in diverse contexts.

Fig. 1. From Video to MOS: The flowchart of the proposed No Reference
Video Quality Assessment method. This diagram outlines the transformation
process starting from video input to the final Mean Opinion Score prediction,
detailing each crucial stage of frame conversion, feature extraction, and
spatial-temporal feature synthesis.

EXPERIMENTAL RESULTS

The median SROCC and PLCC values over 100 test times
(20 rounds of 5-fold cross-validation) are presented in Tables
I and II for KONVID-1K and LIVE-VQC, respectively. The
best-performing architectures are highlighted in bold face. The
results clearly show that the Mixed-5b layer with a Linear
Kernel outperforms other structures.

Figures 2 and 3 illustrate the scatter plots of the predicted
quality scores versus subjective scores using the best model
on the KonVid-1k and LIVE-VQC datasets, respectively. The
results clearly demonstrate that the proposed method achieves
a strong correlation with subjective scores, particularly for
KonVid-1k.

We conducted cross-database validation by selecting each
video as the training set and evaluating performance on the
other. The SROCC scores for both databases are presented
in Table 3. The top 3 results are indicated in bold face.
The results clearly show that the proposed method achieves
acceptable performance. Moreover, the method performs well
with a low-complexity approach that simply calculates feature
map correlations using a fine-tuned network. Overall, the pre-
sented method delivers competitive results while maintaining
efficiency compared to more complex approaches.

CONCLUSION

The proposed method exploits the correlation between deep
features as a frame-level features for UGC quality assess-
ment. These features capture structural information at various



TABLE I
CORRELATION OF PREDICTED MOS WITH GROUND TRUTH MOS -

INCEPTIONV3 - KONVID-1K

Layers Kernel SROCC PLCC
avgpool Mixed 5b Mixed 5c

✓ ✓ ✓
linear 0.7983 0.8067

rbf 0.7924 0.7822

✓ ✓ -
linear 0.8145 0.8076

rbf 0.7895 0.7797

✓ - ✓
linear 0.7987 0.7964

rbf 0.7679 0.7769

✓ - -
linear 0.5841 0.5737

rbf 0.6433 0.6498

- ✓ -
linear 0.8179 0.8118

rbf 0.7838 0.7727

- ✓ ✓
linear 0.8139 0.8052

rbf 0.7798 0.7846

- - ✓
linear 0.7809 0.7780

rbf 0.7939 0.7904

Fig. 2. Scatter plot of subjective MOS vs objective scores on the KoNViD-1k
dataset

granularities. The extracted features are derived from a net-
work fine-tuned on TID-2013, a well-known image quality
assessment dataset; then combined with high-level features
extracted from the final layers of the network and temporally
pooled. The impact of fine-tuning on the image dataset is
reflected in spatial quality-aware feature vectors. Experimental
results demonstrate this effect in both single and cross-dataset
validations.

REFERENCES

[1] D. Li, T. Jiang, and M. Jiang, “Recent Advances and Challenges in
Video Quality Assessment,” ZTE Commun., 2019. [Online]. Available:
https://doi.org/10.12142/ZTECOM.201901002

[2] “10 YouTube Statistics That You Need to Know in 2022,” [Online].
Available: https://www.oberlo.com/blog/youtube-statistics (accessed Jul.
23, 2022).

TABLE II
CORRELATION OF PREDICTED MOS WITH GROUND TRUTH MOS -

INCEPTIONV3 - LIVEVQC

Layers
Kernel SROCC PLCC

avgpool Mixed 5b Mixed 5c

✓ ✓ -
linear 0.7842 0.7923

rbf 0.7672 0.7918

✓ - ✓
linear 0.7923 0.8139

rbf 0.7259 0.7690

✓ - -
linear 0.5624 0.6241

rbf 0.5274 0.6001

- ✓ -
linear 0.7939 0.8125

rbf 0.7867 0.7626

- ✓ ✓
linear 0.7704 0.8027

rbf 0.7690 0.7768

- - ✓
linear 0.7572 0.8007

rbf 0.7607 0.8121

✓ ✓ ✓
linear 0.7868 0.7910

rbf 0.7611 0.8098

Fig. 3. Scatter plot of subjective MOS vs objective scores on the LiveVQC
dataset

[3] “Facebook Video Stats to Know in 2022 — 99firms,” [Online]. Avail-
able: https://99firms.com/blog/facebook-video-statistics/ (accessed Jul.
23, 2022).

[4] Nidhi and N. Aggarwal, “A review on Video Quality Assessment,” in
Proc. Recent Adv. Eng. Comput. Sci. (RAECS), Mar. 2014, pp. 1–6. doi:
10.1109/RAECS.2014.6799645.

[5] A. K. Moorthy and A. C. Bovik, “Blind Image Quality Assessment:
From Natural Scene Statistics to Perceptual Quality,” IEEE Trans.
Image Process., vol. 20, no. 12, pp. 3350–3364, Dec. 2011, doi:
10.1109/TIP.2011.2147325.

[6] J. Xu, P. Ye, Y. Liu, and D. Doermann, “No-reference video quality
assessment via feature learning,” in Proc. IEEE Int. Conf. Image
Process., Oct. 2014, pp. 491–495. doi: 10.1109/ICIP.2014.7025098.



TABLE III
COMPARATIVE ANALYSIS OF VIDEO QUALITY ASSESSMENT MODELS

TRAINED ON LIVEVQC AND KONVID-1K AND TESTED ON EACH OTHER
USING PLCC AND SROCC METRICS

Train on LiveVQC KonVid-1K

Test on KonVid-1k LiveVQC

Method PLCC SROCC PLCC SROCC

CNN-TLVQM (2020, MM) 0.631 0.642 0.752 0.713

VIDEVAL (2021, TIP) 0.621 0.625 0.841 0.669

DisCoVQA (2022, arxiv) 0.785 0.754 0.787 0.737
GST-VQA (2021, TCSVT) 0.7074 0.685 0.777 0.732
MDTVSFA (2021, JCV) 0.711 0.645 0.816 0.716

Bakhtiar (2022, DFMP) 0.647 0.679 0.823 0.756
Proposed Method 0.6715 0.6698 0.821 0.729

[7] J. Xu, et al., “No-reference video quality assessment via feature learn-
ing,” in Proc. IEEE Int. Conf. Image Process., 2014.
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